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Abstract

Atrial fibrillation (AF) is the most common arrhyth-
mia in developed countries and is associated with reduced
quality of life as well as an increased risk of life-changing
events, such as stroke and heart failure. Enabling timely
detection of new clinically relevant episodes of AF in pa-
tients already diagnosed with the condition would sup-
port physicians in improving patient management. This
study investigates the effectiveness of convolutional neu-
ral networks (CNN) for automated AF detection in 14-day
single-lead ECG wearable patch data collected just af-
ter a successful electrical cardioversion. Continuous ECG
data from 89 patients were segmented into contiguous 10-
second intervals and annotated by ECG experts for pres-
ence or absence of AF. A CNN was developed to classify
AF at the segment level, and generalizability was evalu-
ated on out-of-distribution subjects. The model achieved
a sensitivity of 0.87 and specificity of 0.96 on unseen sub-
jects, demonstrating high accuracy for AF recurrence de-
tection.

1. Introduction

Atrial fibrillation (AF) is the most prevalent cardiac ar-
rhythmia [1]. Its presence leads to electrical and structural
remodeling of the heart, which in turn promotes the persis-
tence of AF in a self-perpetuating cycle [2]. Electrical car-
dioversion is a treatment for AF and successfully restores
sinus rhythm in more than 90% of AF cases [3]. However,
recurrence is expected in approximately 30% of patients
in the following 1-2 weeks [3]. Although the clinical rel-
evance of early AF recurrence after cardioversion remains
to be fully elucidated, our goal in this study was to utilize
these data to develop tools for AF detection. Improving
the accuracy of AF detection from single-lead patch ECG
is critical because such devices collect very long-term data

(large amount of data to review) with lower signal-to-noise
ratio.

A range of tools are available for AF detection, in-
cluding 12-lead ECG, Holter monitoring, mobile cardiac
telemetry, handheld devices, wearable patches, biotextiles,
smart devices, and implantable loop recorders [4]. These
modalities vary in their degree of invasiveness and moni-
toring duration, spanning from single point-in-time assess-
ments to long-term continuous rhythm tracking. Among
these, single-lead ECG patch devices have emerged as an
increasingly-popular non-invasive and user-friendly solu-
tion for extended ambulatory cardiac monitoring. Notably,
14-day continuous monitoring has been shown to have a
higher AF detection rate than 24-hour Holter monitoring,
due to the increased recording duration (one vs. multiple
day recordings) [5, 6]. Continuous monitoring generates
copious amounts of data—a single patient monitored for
around 14 days would contain around 120,000 valid ECG
segments of 10s depending on both quality of the ECG
signals and patient compliance. High-performance AF de-
tection systems could help healthcare providers in triaging
the vast amount of data, and streamline the computation of
an accurate AF burden.

Several studies have examined AF detection using patch
ECGs, including large at-home studies (2,659 participants)
[7]. However, investigations focusing on the 14-day period
post-cardioversion are limited, with one study including
only 16 such subjects [8].

Artificial Intelligence (AI) and more specifically Deep
Learning (DL) can automatically detect arrhythmias by
learning from preexisting expert rhythm type annotations
[9]. Through a series of transformations, DL neural net-
works learn characteristics (i.e., features) of the ECG sig-
nal that are later used to determine the rhythm type, op-
timized with supervised learning. Validation and test sets
from external populations are used for assessing model ef-
fectiveness [10]. Such sets help determine whether the fea-



tures learned during training are specific to the subjects in
the training cohort or generalizable to unseen subjects.

The most common DL architectures include convolu-
tional neural networks (CNN), which extract local features
from the input and build hierarchical features with more
layers. Many works have developed CNNs to detect AF
from single-lead ECGs from handheld devices [11]. The
most common dataset we have seen to train or validate
these models is from the PhysioNet/CinC challenge 2017
[12]. There has also been work done on AF detection using
single lead adhesive patch ECGs [9].

While prior work has used DL for AF detection,
few have addressed subject-level recurrence, and studies
explicitly evaluating generalization to out-of-distribution
(OOD) subjects have largely focused on Holter recordings
[13]. There have been few studies applying DL to 14-
day Zio patch data directly following cardioversion, nor
explicitly focusing on subject-level AF recurrence during
the post-procedure blanking period. Prior work such as
[14] has demonstrated the ability of DL to detect AF on
OOD subjects, but this has not been directly examined in
the context of post-cardioversion monitoring.

This study evaluates the performance of a CNN for de-
tecting AF from 14-day single-lead ECG wearable patch
recordings. We focus on patients with paroxysmal AF
who underwent electrical cardioversion and ECGs were
collected directly after the procedure. The neural network
we developed was evaluated on OOD subjects—achieved
a sensitivity of 0.87, a specificity of 0.96, and an F1 score
of 0.82.

2. Study Subjects

For this study, we analyzed a subset of participants en-
rolled in the trial registered under ClinicalTrials.gov Iden-
tifier: NCT04267133, which included men and women
who were medically managed for symptomatic AF, either
paroxysmal or persistent, and had symptomatic AF treated
by transthoracic electrical cardioversion. Exclusion crite-
ria rejected patients with an implanted device (pacemaker,
CRT/CRT-ICD, ICD) with ventricular pacing requirement
of 70% or greater; those participating in other clinical tri-
als; subjects unable to cooperate with the protocol due to
dementia, psychological, or related reasons; individuals
who declined informed consent; and patients unable to op-
erate the device, such as those with Parkinson’s disease or
those who are blind.

3. Device and Data Collection

The ECG recordings were acquired using the ZioXT
ECG patch (iRhythm Technologies, San Francisco, CA,
USA). This device features an amplitude resolution of
approximately 3.2 µV and an ECG sampling frequency

of 200 Hz, supporting continuous ambulatory monitoring
over extended periods. Figure 1 details the timeline of the
cardioversion procedure and data collection time frame.

4. Methodology

Prior to data preprocessing, ECG data were collected
from subjects using a Zio patch single-lead ECG device.
Data from 89 subjects were labeled and subsequently ran-
domly divided into three disjoint groups by subject for
model development and evaluation, such that the groups
maintained approximately a 2:1 ratio of non-AF to AF
cases. A CNN was trained to classify 10-second ECG
segments as AF or non-AF using data from these groups.
Model performance was further evaluated on segments ob-
tained from OOD subjects to assess generalizability.

At the subject level, AF recurrence was defined as the
occurrence of AF in three consecutive 10-second segments
(totaling 30 seconds).

4.1. Data Preprocessing

All recordings were converted to in ISHNE format, con-
taining the raw ECG data. Manual adjudication of car-
diac rhythm was initially performed by an ECG technician
using the M12A (Global Instrumentation LLC, Syracuse,
NY), with a randomly selected subset (5%) independently
reviewed by a board-certified cardiologist for quality as-
surance.

AF was annotated by an ECG expert, with episodes
defined as lasting at least 15 seconds. Each annotation
included the start and end times of AF events. Both
AF and atrial flutter events were included during annota-
tion. The ECG data were segmented into contiguous, non-
overlapping 10-second intervals. Each segment was as-
signed a label based on the expert annotations. Atrial flut-
ter segments were dropped, and segments with absolute
amplitude exceeding 3 mV or signal energy greater than
3 standard deviations above the mean were excluded. Sig-
nal preprocessing included bandpass filtering with a 0.5 Hz
low-frequency cutoff and 50 Hz notch filtering to suppress
powerline interference.

Figure 1: Study Protocol



Figure 2: Neural Network Architecture

4.2. Neural Network Architecture

We developed a convolutional neural network contain-
ing four convolutional layers and three fully connected
layers. Each layer produced feature maps with progres-
sively larger receptive fields approximately 20 ms, 50 ms,
110 ms, and 230 ms, respectively. The 1-D convolutions
used a kernel size of 4, stride of 2, and padding of 1. Batch
normalization and rectified linear unit activations were ap-
plied to each layer, and dropout was employed for regular-
ization. The output feature maps were flattened and passed
through three fully connected layers. The final output layer
consisted of a single unit with sigmoid activation to output
the probability of AF. Figure 2 is an overview of the net-
work architecture.

4.3. Optimization

Binary cross-entropy was used as the loss function. The
network was optimized using AdamW [15] with weight
decay [16]. Learning rate scheduling was implemented
via cosine annealing with warm restarts [17], updating the
base learning rate at every step and doubling the cycle
length after each restart to progressively cool the anneal-
ing. A threshold of 0.5 was used to discretize the output
probability for segment-level classification.

During training, a validation set consisting of OOD sub-
jects was used to monitor model convergence and tune
hyperparameters, including learning rate, batch size, and
network architecture. All reported evaluation metrics are
based on a separate, third set of OOD subjects that were
held out until final testing.

5. Results

The AF detection of 10 second ECG segments using the
CNN achieved an OOD sensitivity of 0.87, a specificity of

Figure 3: Continuous monitoring labels and AI-detected
AF in the OOD test dataset (red = AF, blue = non AF).

0.96, and a F1 score of 0.82. Figure 3 shows most seg-
ments were classified well on most subjects, except for
subject 156, which we later discuss in section 6.

At the subject level, there were 4 subjects with recur-
rence and in all cases AF was detected during the time they
were wearing the Zio patch.

6. Challenging ECG Morphologies

In reviewing ECG recordings from subjects with rela-
tively higher false positive rates, several challenging mor-
phologies were noted. Subject 111 exhibited first degree
AV block throughout the recording. Subject 156 demon-
strated very tall T waves in some segments, as well as frag-
mented QRS complexes and changes in QRS morphology,
as seen in Figure 4. These atypical patterns may contribute
to difficulties in accurate AF classification by the model.

7. Conclusion

In this work, we developed a convolutional neural net-
work to detect atrial fibrillation recurrence using 14-day
single-lead ECG patch recordings following electrical car-



Figure 4: Subject 156

dioversion. The model was evaluated on OOD subjects.
These results highlight the potential of deep learning for
automated long-term AF monitoring in real-world clini-
cal populations. Future work will focus on expanding the
dataset and addressing remaining challenges with atypical
ECG morphologies.

Acknowledgments

This study was supported by funding provided by NIH
Award No: R01HL145590 and R01NR018301.

References

[1] Lip GYH, Fauchier L, Freedman SB, et al. Atrial fib-
rillation. Nature Reviews Disease Primers March 2016;
2(1):16016. ISSN 2056-676X.

[2] Nattel S. Electrophysiologic Remodeling:. Journal
of Cardiovascular Electrophysiology 1999;10(11):1553–
1556. ISSN 1540-8167.

[3] Brandes A, Crijns HJGM, Rienstra M, et al. Cardiover-
sion of atrial fibrillation and atrial flutter revisited: Current
evidence and practical guidance for a common procedure.
EP Europace August 2020;22(8):1149–1161. ISSN 1099-
5129.

[4] Van Gelder IC, Rienstra M, Bunting KV, et al. 2024 ESC
Guidelines for the management of atrial fibrillation devel-
oped in collaboration with the European Association for
Cardio-Thoracic Surgery (EACTS). European Heart Jour-
nal September 2024;45(36):3314–3414. ISSN 0195-668X.

[5] Liu CM, Chang SL, Yeh YH, et al. Enhanced detection of
cardiac arrhythmias utilizing 14-day continuous ECG patch
monitoring. International Journal of Cardiology June 2021;
332:78–84. ISSN 0167-5273, 1874-1754.
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